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Fourier Analysis of 
Musical Intervals
Michael C. LoPresto, Henry Ford Community College, Dearborn, MI

Use of a microphone attached to a computer 
to capture musical sounds and software to 
display their waveforms and harmonic spec-

tra has become somewhat commonplace.1 A recent 
article in The Physics Teacher aptly demonstrated the 
use of MacScope2 in just such a manner as a way to 
teach Fourier analysis.3 A logical continuation of this 
project is to use MacScope not just to analyze the 
Fourier composition of musical tones but also musi-
cal intervals.

This exercise does not involve complex mathemat-
ics, so it can be useful as either a demonstration or ex-
periment showing Fourier series as the basis of musical 
intervals in a more qualitative musical acoustics or 
science of sound course, the type of course for which 
it was developed. It has, however, also been used in a 
more mathematically advanced introductory physics 
course as a demonstration and example of a practical 
application of Fourier analysis. 

Musical intervals have been recognized since 
the time of Pythagoras as combinations of musical 
pitches. Different intervals are identified by the ratios 
of the frequencies of the two pitches involved. The 
frequency of a sound wave is the main cause of the 
ear’s perception of musical pitch.4 When two pitches 
are sounded simultaneously, the human eardrum 
actually vibrates at both frequencies, and the brain 
perceives the interval as a single musical pitch with a 
frequency that is the fundamental of a harmonic series 
to which both pitches belong. This pitch, known as a 
“missing fundamental” because it is not really there, is 

heard with a quality (or, as musicians call it, “timbre”) 
that results from the harmonic spectrum and result-
ing complex waveform of the combination of the two 
tones. In this process, known as “fundamental track-
ing,” it is as if the ear is actually performing a Fourier-
transform.5

Table I shows the pitches, measured with Mac-
Scope (see Fig. 1), of the middle octave of a grand 
piano and the frequency ratios they make with the 
first note of the scale, middle C. The whole-number 
ratios are those that most closely correspond to each 
interval. The name of each interval is based on its po-
sition in the scale, not the numbers in the ratio. Note 
that most of the whole-number ratios, although not 
all,6 are those of the “Just” musical scale, on which 
most sets of laboratory tuning forks are based. There 
are many different possible scales or “intonations” and 
different frequency-ratios that can be used for each in-
terval,7 but it has been noted, again, since the time of 
Pythagoras, that the ear seems to respond most favor-
ably to intervals with smaller whole-number ratios. 

Musical pitches consisting of only a fundamen-
tal, like those produced by a vibrating tuning fork, 
combine in a straightforward manner. The spectrum 
of the combination tone will have two harmonics 
and the resulting waveform will be more complex, 
repeating itself with a frequency equal to the above 
mentioned “missing fundamental.” For example, 
from a standard set of laboratory tuning forks, when 
C-256 and G-384 are sounded together, an interval 
of 384/256=3/2, a perfect fifth results. Individually, 
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each tuning fork produces a “dull” simple sounding 
sine-wave of their given frequency, but their combina-
tion has a more interesting quality and a frequency 
of 384/3=256/2=128. This can be tested with the aid 
of computer hardware and software1,2 for any pair of 
tuning forks in a standard laboratory set.8

For voices, a piano, or other musical instruments, 
each individual tone has multiple harmonics and 

therefore its own complex waveform. This makes 
combinations of these tones even more complex. Fig-
ure 2 is the display from MacScope of the waveform 
and harmonic spectrum of an interval of a fifth, the 
C and G keys of the piano played simultaneously. 
Note that the first harmonic, the above-defined “miss-
ing fundamental” is barely, if at all, there (see next 
paragraph), and the first significant harmonics pres-

Musical 

Note	

Frequency

(measured)

Hz

Ratio of  
frequency 

of note to 

C

Musical 

Interval

Closest 
whole- 
number 
ratio for  
interval

f1 

(exp.)

Hz

f1 

(meas.)

Hz

C 261 1 unison 1 Fig. 1

C# (Db) 278 1.07
(minor)

m2nd
16/15 17.4

D 295 1.13
(major)

M2nd
9/8 32.8 32.8

D# (Eb) 311 1.19 m3rd 6/5 51.8
51.6

(Fig. 3)

E 330 1.26 M3rd 5/4 66 66.1

F 348 1.33
(perfect)

P4th
4/3 87 87.1

F# (Gb) 369 1.41 (tritone)6 7/5 52.7
52.6

(Fig. 6)

G 392 1.5 P5th 3/2 131
131

(Fig. 2)

G# (Ab) 414 1.59 m6th 8/5 51.8 51.8

A 439 1.68 M6th 5/3 87.8
87.8

(Fig. 4)

A# (Bb) 467 1.79 m7th 16/9 29.2
29.4

(Fig. 5)

B 493 1.89 M7th 15/8 32.9 32.8

C 523 2.0
P8th

(octave)
2/1 262 262

Table I. Frequencies of Musical Notes Measured with MacScope.

Table I:  The frequencies of each musical note in the middle octave of a grand piano measured with MacScope, the ratios of 
each musical interval in the octave calculated with the measured frequencies, and the closest whole-number ratio for each inter-
val. The last two columns are the expected frequencies of the “missing fundamental” of the harmonic series for each interval 
compared with those measured with MacScope. The “missing fundamental” for the interval of a minor second was not recorded 
because not enough of the long waveform was captured with MacScope to measure it. 
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ent are the second and the third, the numbers from 
the interval’s whole-number ratio, 3/2. Also note the 
higher harmonics present (4, 6, 8, 9, 10, 12, and 14), 
all multiples of 2 or 3 or both, and several pairs (6/4, 
9/6, and 12/8), all in the ratio 3/2.  

The apparent presence of harmonics (with small 
amplitudes) that are not multiples of the numbers 
in the closest whole-number ratio is likely due to the 
fact that it is difficult to select exactly one cycle of the 
waveform with MacScope on which to perform the 
Fourier transform. The program treats the portion of 
the waveform selected as exactly one complete cycle, 
so inclusion or exclusion of a small amount of the 
curve beyond or short of an exact cycle will cause the 
inclusion of “spurious” harmonics in the spectrum.3 

These, however, are not difficult to identify as they 
will have small amplitudes, and a waveform very close 
to the one displayed can be constructed with Mac-
Scope, as shown in Fig. 2. without them. This dif-
ficulty in selecting exactly one cycle of the waveform 
also may result in small errors in measurement of the 
frequencies of the “missing fundamentals” of the in-
tervals. However, selecting slightly different amounts 
of the display as one waveform did not result in signif-
icantly different harmonic spectra. The dominant har-

monics of the spectra were always the same. The last 
two columns of Table I compare the expected values 
of the “missing fundamental,” which is determined by 
dividing the higher frequency in the interval by the 
higher number in its closest whole-number ratio to 
that measured from the waveform of the interval from 
the MacScope display.

The waveforms of all of the intervals in Table I were 
captured and displayed with Macscope. Their har-
monic spectra all showed dominance of the harmonic 
numbers equal to those that appear in their closest 
whole-number ratio and their multiples. The interval 
of a fifth C-G, along with the fourth C-F and the oc-
tave C-C, has relatively simple waveforms compared 
to others. These intervals are often called the perfect 
consonances. The waveforms of the major and minor 
thirds and sixths are more complex and are often re-
ferred to as imperfect consonances. Figures 3 and 4 
show the waveforms and harmonic spectra of the mi-
nor third C-Eb and major sixth C-A, respectively. The 
seconds and sevenths and the tritone6 have the most 
complex waveforms and are called dissonant inter-
vals.9 Figures 5 and 6 feature dissonant intervals. 

If a “field trip” to the nearest grand piano is not 
practical (ours is in the choir room in the Fine Arts 

Fig. 1. The display from MacScope 
showing one cycle of the wave-
form of the note middle C from 
a grand piano and its Fourier 
spectrum. MacScope calculates 
the fundamental frequency of the 
cycle selected; these were record-
ed for all pitches in Table I.

Fig. 2. The waveform of the 
interval of a fifth, C-G, displayed 
on MacScope and its Fourier 
spectrum. Note the dominance 
of the 2nd and 3rd harmonics 
and their multiples. The clos-
est whole-number ratio for the 
fifth is 3/2. The highlighted har-
monics are those present in the 
dark outline of the waveform 
superimposed on the thicker-
red waveform captured by 
MacScope.

Fig. 3. The waveform and spec-
trum of the interval of a minor 
third, C-Eb (6/5), showing the dom-
inance of the 5th and 6th and 
their multiples the 10th and 12th 
harmonics.
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Building, just a short walk, lap-tops in hand, from 
the Science Building), a more portable, upright piano 
(usually on wheels) or even an electronic piano could 
be used.
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Fig. 4. The waveform and spec-
trum of a major-sixth, C-A (5/3), 
showing the dominance of the 
3rd and 5th harmonics and many 
of the higher multiples of the 
pair. As in Fig. 2 the highlighted 
harmonics are those present in 
the dark outline of the wave-
form.

Fig. 5. The waveform and spec-
trum of the dissonant interval, 
a minor-seventh, C-Bb (16/9), 
showing the dominance of the 
9th and 16th harmonics and 
many of the higher multiples of 
the pair.

Fig. 6 The waveform and spectrum 
of the “tritone” interval, C-Gb 
(F#). The closest whole-number 
ratio for the tritone is 7/5. This is 
not what the tritione is considered 
to be in Just intonation (as are all 
the other ratios given in Table I),8 
but notice the dominance in the 
spectrum of the 5th and 7th and 
their multiples the 10th and 14th 
harmonics.
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